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Abstract: Nonuniform rotational distortion (NURD) correction is vital for endoscopic optical
coherence tomography (OCT) imaging and its functional extensions, such as angiography
and elastography. Current NURD correction methods require time-consuming feature track-
ing/registration or cross-correlation calculations and thus sacrifice temporal resolution. Here
we propose a cross-attention learning method for the NURD correction in OCT. Our method is
inspired by the recent success of the self-attention mechanism in natural language processing and
computer vision. By leveraging its ability to model long-range dependencies, we can directly
obtain the spatial correlation between OCT A-lines at any distance, thus accelerating the NURD
correction. We develop an end-to-end stacked cross-attention network and design three types of
optimization constraints. We compare our method with two traditional feature-based methods
and a CNN-based method on two publicly-available endoscopic OCT datasets. We further verify
the NURD correction performance of our method on 3D stent reconstruction using a home-built
endoscopic OCT system. Our method achieves a ∼3× speedup to real time (26± 3 fps), and
superior correction performance.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) [1] uses temporal coherence gating to resolve depth
information in micrometer scale. It enables non-invasive tomographic imaging of biological
tissues with near-cellular spatial resolution and high sensitivity [2]. Nowadays OCT has become
a routine diagnostic instrument in ophthalmology [3]. Through a fiber-optic endoscopic probe, its
application is expanding to other medical fields for in situ label-free biopsy, such as cardiovascular,
respiratory, gastrointestinal, and cervix sites [4–6].

For such applications, an endoscopic probe with point-by-point scanning capability is usually
required. Typically, the scanning is controlled externally and implemented mechanically to
achieve axial movement and circumferential rotation of the probe (referred to as proximal
scanning). In recent years, with the development of technologies such as MEMS and piezoelectric
devices, point-by-point scanning can be achieved by shifting the beam at the output end of the
probe (referred to as distal scanning). However, distal scanning is currently rarely used clinically
due to its significantly higher cost and larger size of the probe compared to the proximal scanning
[7].

Due to the irregularities in the shape of vessels and other lumen structures, friction, and torque
transmission losses, the rotation of the proximal scanning probe becomes non-uniform, resulting
in distortion of the intracanal OCT images, known as non-uniform rotational distortion (NURD)
[8]. NURD can introduce errors in the morphological representation of tissues and make it
difficult to perform functional imaging of tissue, such as elasticity, birefringence, angiography, and
treatment processes [9–11]. Effective NURD correction is demanded to deal with such problems.
For many application scenarios of OCT that require real-time operation or fast evaluation, such
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as surgical robot navigation, online monitoring of treatment, and in situ diagnosis, the time cost
of the NURD correction should be considered.

Existing methods for the NURD correction are primarily based on feature tracking/registration
and dynamic programming [11–14]. William et al. used the speeded-up robust feature (SURF)
operator to extract feature points in OCT B-frames and then tracked them across adjacent frames
for A-line alignment [11]. Cao et al. proposed an improved feature extraction algorithm and put it
into coarse and fine registration process [12]. These methods rely on extracting a large number of
feature points to improve the correction accuracy. Therefore, there is a trade-off between the time
cost of feature extraction and accuracy. Soest et al. utilized the dynamic programming method
to find a continuous path through a spatial cross-correlation matrix that measures the region
similarity between adjacent frames [13]. However, the construction of the cross-correlation
matrix is time-consuming. Qi et al. used a graph-based dynamic programming algorithm to
find an optimal path that represents the initial rotation angle error drifting along the pull-back
direction [14], which significantly speeds up the processing, but the A-line level distortion is
neglected.

Other methods utilized hardware and prior knowledge specific to the endoscopic probe or
imaging target [9,15], thus lacking generality. Abouei et al. presented a motion artifact correction
method based on azimuthal en face image registration [16]. However, this method needs to
collect the complete image sequence first and thus cannot correct the distortion in real time.
Uribe-Patarroyo and Bouma developed a method based on speckle decorrelation [17], which
could perform NURD correction in real-time, but the decorrelation is vulnerable to the variation
of environment, such as motion and temperature [18].

Recently, Liao et al. proposed a convolutional neural network (CNN)-based learning method
for the NURD correction [19]. They developed a new A-line level shifting error vector estimation
network to extract the optimal path from a spatial correlation matrix. Another CNN branch
was introduced to suppress the accumulative error. Their method outperforms previous ones
on correction performance and achieved a processing rate of around 7 fps (frame per second).
However, CNNs have limitations in modeling long-range dependencies due to the constraints
of local receptive fields and fixed convolutional kernel sizes, thus requiring pre-build a spatial
correlation matrix as network input, which affects their capability to scale up the processing
efficiency.

In this work, we propose a cross-attention learning method to address the limitations of
existing NURD correction methods above. Our method is inspired by the recent success of the
self-attention mechanism [20] in natural language processing (NLP) and computer vision (CV),
which has played a crucial role in the development of cutting-edge tools like ChatGPT [21]. Our
key finding here is that the self-attention mechanism enables the direct establishment of global
spatial correlations within OCT A-line sequences, without the necessity of correlation calculation
in advance. Because the self-attention mechanism is used between different A-lines, we refer
to it here as cross-attention. To achieve a high correction efficiency, we develop an end-to-end
stacked cross-attention network and design three types of optimization constraints.

2. Methods and materials

2.1. Overall framework

Figure 1 illustrates the overall framework of our proposed method. (a) and (b) illustrate its
training and inference phases, respectively. We use a self-supervised generative learning approach
for training, i.e., by distorting the original B-scans and then using the network to predict their
distortions. Specifically, in Fig. 2, we use a distortion vector, which serves as the ground truth
(GT) of the A-line shifts due to the NURD, to do the transform TO→D from the original frame to
the distorted frame (the generation of the GT distortion vectors follows the method described in
Section 3.2.1 of [19]). These two frames are then fed into the stacked cross-attention network,
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which is employed to correct the NURD. It predicts two distortion vectors: the first one is
the distortion applied on the original frame to form the distorted frame; the second one is the
distortion applied on the distorted frame to form the original frame. This bi-directional design is
inspired by the notion of cycle consistency in generative learning [22]. Using these predicted
vectors, we can apply the transform T ′

O→D and T ′
D→O to the original and distorted frames, and

form the new distorted and original frames, respectively. We use three types of optimization
constraints in the training: (1) mean absolute error loss (L1 loss) Ll1 between the distortion
vector 1 and the GT vector, (2) smoothness loss Lsm of the predicted distortion vectors, and (3)
similarity loss Lsi between the original/distorted frames and the new original/distorted frames at
the A-line level. We list their functions below:

Ll1 =
1
N

N∑︂
i=1

|︁|︁d̂i − di
|︁|︁, (1)

Lsm =
1

N − 1

N−1∑︂
i=1

|︁|︁d̂i − d̂i+1
|︁|︁, (2)

Lsi =
1
N

N∑︂
i=1

|︁|︁|︁|︁|︁|︁ 1
M

M∑︂
j=1

p̂i,j −
1
M

M∑︂
j=1

pi,j

|︁|︁|︁|︁|︁|︁, (3)

where d̂i and di are the elements of the predicted distortion vector and ground truth, respectively.
N is the length of the vector (also the number of A-lines in each frame). M is the number of data
points in each A-line. p̂i,j and pi,j are the pixel value of data point j in A-line i from the predicted
new frame and the corresponding input image, respectively. The smoothness loss and similarity
loss are all adopted in the prediction of two distortion vectors, and L1 loss is only adopted in the
prediction of distortion vector 1 because the GT vector of distorting original frame is known.
The final loss of network is:

L = L1 + Lsm−1 + Lsm−2 + Lsi−1 + Lsi−2. (4)

In the inference phase, two successively acquired OCT B-scans (the raw n − 1-th and n-th
frames. n refers to time points) are fed into the trained stacked cross-attention network. The
output of this network is only the distortion vector 1, which is used to correct the NURD of the
newest n-th frame. We generate the cumulative distortion vector from raw n-th frame to the
initial 1-th frame using the method described in [19]. Specifically, the n-th frame is composed
of N A-lines An

i (i ∈ [1, N]). Due to the NURD occurrence in adjacent frames, An
i mismatches

its correct position which is supposed to be aligned to An−1
j . The position error εn

i = j − i of
A-line An

j constitutes one element of distortion vector Dn∼n−1 =
[︁
εn

1 , . . . , εn
i , . . . , εn

N
]︁T (it can be

integers only). Given predicted A-line level distortion vector D̂n∼n−1 between n-th and n − 1-th
frames and cumulative Dn−1∼1 between n− 1-th and initial 1-th frames, the latest distortion vector
Dn∼1 can be obtained by cumulative transform operation Ψ:

Dn∼1
i = Ψ(i)(D̂n∼n−1, Dn−1∼1) = D̂n∼n−1

i + Dn−1∼1
j ,

j = D̂n ∼n−1
i + i.

(5)

where we can cumulatively transform the n-th frame to the initial 1-th frame in A-line level, and
finally generate NURD-corrected n-th frame.
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Fig. 1. Overall framework of our proposed method. (a) and (b) illustrate its training and
inference phases, respectively.

2.2. Stacked cross-attention network

Figure 2 illustrates the stacked cross-attention network. (a) is the overall architecture and (b)
is the details of the multi-head cross-attention module. Instead of 2D operations employed in
CNNs, here we use each A-line (1D) of the OCT B-scans as a token. Then they are used to
calculate the query (Q), key (K), and value (V) vectors in the self-attention mechanism [20]:

Q = X · WQ + bQ (6)

K = X · WK + bK (7)

V = X · WV + bV (8)

where X (X ∈ RN×M) is the input tokens with N A-lines and M data points in each A-line. The
linear projection is defined as:Q, K, V ∈ RN×E (E is the embeding dimension, and E>M), and
WQ, WK , WV are weight matrices, while bQ, bK , bV are bias terms. This linear projection step
allows the model to capture different aspects of the input sequence. The query vectors Q represent
the current token and are responsible for computing attention weights. The key vectors K capture
the contextual information of each element, enabling the model to assess the relevance between
different elements. The value vectors V carry the actual content information associated with
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Fig. 2. Illustration of the stacked cross-attention network. The upper panel is the overall
architecture and the lower dashed box is the details of the multi-head cross-attention module.

each token. Then these vectors are fed into 5 consecutive multi-head cross-attention blocks
(×5). Each block includes a multi-head cross-attention module and a multi-layer perception
(MLP) module [20]. In each block, we apply layer normalization (Norm) before each module
and conduct residual connections. Finally, we perform averaging and linear operations to get the
distortion vectors.

The multi-head cross-attention module in the lower dashed box of Fig. 2 allows the model
to attend to different parts of the input sequence and capture diverse dependencies, enhancing
its representation and predictive capabilities. Given a sequence of input embeddings X =
[x1, x2, . . . , xn], the output is computed as follows:

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO (9)

where headi = Attention(QWQ
i , KWK

i , VWV
i ) represents the attention mechanism applied on the

projected queries QWQ
i , keys KWK

i , and values VWV
i of the i-th attention head. Here, WQ

i , WK
i ,

and WV
i are learnable linear projection matrices specific to each attention head. The concatenated

outputs are then linearly transformed by the matrix WO to produce the final output.

2.3. Datasets and implementations

We collect a total of 7,731 endoscopic OCT B-scans from publicly-available datasets [10,15,17,
23–27] to train our model. As mentioned above, we use these data to generate the GT distortion
vectors using the method in [19]. By applying these vectors to the B-scans, we create 20,000
original-distorted image pairs for the training. Because most of them are from clinical acquisition,
the temporal and spatial characteristics of the distortion vectors are consistent with real application
scenarios. We then use another two synthetic endoscopic datasets and two real publicly-available
endoscopic datasets [28,29] for evaluating our trained model. Note that we train our model in
one go and evaluate it on external test datasets. Compared to the commonly used division of the
same dataset into training and test sets, this approach can better demonstrate the accuracy and
robustness of our approach and the generalization ability of the model.
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The synthetic endoscopic OCT sequences are employed because we cannot get the GT of
NURD from real endoscopic OCT data. We follow the method described in [19] to generate
the synthetic sequences. Firstly, a motion (NURD)-free OCT sequence is created by repeating
an OCT B-frame 500 times. Then we apply 499 random distortion vectors to all frames except
for the first one. We employ a pig bronchus OCT B-scan [25] and a human nasopharynx OCT
B-scan [15] (as shown in Fig. 5 below) to generate the two synthetic sequences for testing. The
two real OCT sequences for testing include a gastrointestinal tract sequence (648 images) [28]
and a sponge surface sequence (240 images) [29].

Besides, we further evaluate the NURD correction performance using our home-built endo-
scopic SD-OCT system. Our system has a central wavelength of ∼ 840 nm and a bandwidth
of ∼ 50 nm, which corresponds to an axial resolution of ∼ 5 µm. Its A-line rate is 80 kHz. A
homemade capillary tube-based fiber optic rotary joint [30] driven by a commercial motor (34
rps rotation speed) is applied to perform circumferential scanning. As shown in Fig. 3(a), an
assembled proximal scanning micro-probe with 1.2 m length offers a lateral resolution of 25
µm and a working distance of 2 mm. The micro-probe with a transparent glass tube is 0.37
mm in diameter shown in the enlarged view of Fig. 3(b). In the experiment, a 30 mm length
intravascular stent with 4 mm diameter was used for imaging as shown in Fig. 3(c).

Fig. 3. (a) Photograph of our assembled proximal scanning micro-probe used for endoscopic
OCT imaging. (b) Enlarged view of the black box in (a). (c) Photograph of the intravascular
stent used in OCT imaging.

We implement the code of our proposed method using pyTorch. Our model is trained on a
personal computer with an Nvidia 3090 GPU (24G onboard memory). We convert an endoscopic
OCT B-scan into an input format where each frame consists of 1024 A-lines, and each A-line
contains 512 data points. We employ the multi-head cross-attention with an embedding dimension
of 1024 and 4 heads. We use the stochastic gradient descent (SGD) [31] optimizer with a learning
rate of 5e − 4. We set a batch size of 24 and train our model for 200 epochs. The training time is
about 33 hours. It should be noted that the model is trained once and for all.

We use the mean absolute error (MAE) ψ(n) to quantitatively evaluate the correction perfor-
mance of the synthetic sequences:

ψ(n) =
1
N

N∑︂
i=1

|︁|︁|︁|︁ ∧Dn
i −Dn

i

|︁|︁|︁|︁ (10)

where
∧

Dn
i and Dn

i are the predicted and the GT shifts of i-th Aline of distortion vectors within n-th
frame, respectively. For the real publicly-available sequences, because the GT of the distortion
vector is unknown, we use the mean standard deviation (mean-STD) σ (n) to quantitatively
evaluate the correction performance, which was commonly adopted in previous NURD correction
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works [13,19]:

σ (n) =
1

N × M

N×M∑︂
i=1,j=1

σ̃5(pi,j) (11)

where σ̃5(pi,j) is the mean-STD of pixel pi,j in adjacent 5 frames with n-th frame as the center.
Precise correction can reduce the mean-STD to nearly 0, but it will never be exactly 0 due to
variations in scanning locations and speckle/decorrelation noise.

3. Results

3.1. Accuracy assessment of NURD correction

Using the synthetic endoscopic OCT sequences that have the GT, we perform the quantitative
comparison of our proposed method with three other representative approaches, including a
feature tracking (FT) method [11], a dynamic programming (DP) method [13], and the CNN-based
method in [19] (referred to as De-NURD). The results are shown in Table 1 and Fig. 4. Our
method achieves the smallest MAE values compared with the other three NURD correction
methods on both synthetic sequences. Specifically, as shown in Fig. 4(a) and (b), our method
corrects the NURD with high accuracy and superior correction stability across the frames in
each sequence. Other methods, in contrast, lack either correction accuracy or stability.

Fig. 4. Quantitative comparison of different NURD correction methods using the two
synthetic sequences. (a) is the result of the pig bronchus data. (b) is the result of the human
nasopharynx data.

Table 1. Quantitative comparison of different NURD correction
methods using the two synthetic OCT sequences. The data format

in the table is mean (standard deviation).

Pig bronchus Human nasopharynx

De-NURD 11.167 (6.799) 12.261 (9.277)

FT 19.633 (13.921) 8.127 (2.352)

DP 3.734 (2.038) 20.519 (12.537)

Ours 3.489 (1.595) 2.561 (1.051)

Figure 5 demonstrates the results before and after the NURD correction using our method,
on (a) the pig bronchus data and (b) the human nasopharynx data. The left column gives the
original B-frames used to create the synthetic sequences. The middle column shows the axial
maximum value projection of the synthetic sequences, which gives better views of the applied
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NURD. The right column gives the NURD-corrected synthetic sequences using our method. As
shown in the figure, our method alleviates the shift and jitter caused by the NURD while the
original structure information is maintained. In addition, the NURD is effectively corrected on
both the synthetic porcine bronchial sequence (a), which has rich feature information, and the
human nasopharyngeal sequence (b), which has less feature information, suggesting that our
method has superior robustness. To verify the NURD correction is performed on the features of
biological tissues, we manually remove tissue-unrelated features (sheath, wire, etc.) in the data
as shown in Fig. 5(c) and (d). Under this condition, our method is still able to correct the NURD
in both the human nasopharynx and the pig bronchus data.

Fig. 5. The NURD performance of two synthetic sequences. (a) is the result of the pig
bronchus data. (b) is the result of the human nasopharynx data. (c) and (d) are the results
after removing the tissue-unrelated features, such as sheath. The left column gives the
original B-frames used to create the synthetic sequences. The middle column shows the
axial maximum value projection of the synthetic sequences, which gives better views of the
applied NURD. The right column gives the NURD-corrected synthetic sequences using our
method.
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3.2. Robustness assessment of NURD correction

The results of the two real publicly-available testing datasets are shown in Table 2 and Fig. 6.
Our proposed method achieves the smallest mean-STD values compared with the other three
NURD correction methods [11,13,19]. Figure 6(a) and (b) are the results of the gastrointestinal
tract and the sponge surface data, respectively. The results of our method are plotted in green,
demonstrating consistent minimum mean-STD values over the image sequences.

Fig. 6. Quantitative comparison of different NURD correction methods using two publicly
available datasets. (a) is the result of the gastrointestinal tract data. (b) is the result of the
flat sponge surface data.

Table 2. Quantitative comparison of different NURD correction
methods using two publicly available datasets. The data format in

the table is mean (standard deviation).

Gastrointestinal tract Sponge phantom

Original 81.693 (38.261) 0.455 (0.081)

De-NURD 66.645 (34.217) 0.313 (0.072)

FT 76.938 (37.481) 0.452 (0.079)

DP 65.654 (34.302) 0.321 (0.082)

Ours 60.225 (30.120) 0.288 (0.076)

Figure 7 shows the qualitative comparison of different NURD correction methods on the
gastrointestinal tract volume data. (a) is the 3D view of a volumetric scan of the gastrointestinal
tract. The red and blue boxes refer to the zoom-in area in (b) and (c), respectively. In Fig. 7(b), to
illustrate the NURD instability, we use RGB channels to encode three consecutive frames, and
each frame is mapped to an individual channel. Structures that do not overlap are rendered in
color and vice versa in greyscale. We can see our method achieves the best spatial consistency.
In Fig. 7(c), we use mean value projection to obtain local en face images. It can be seen that our
method minimizes the distortion caused by the NURD.

Figure 8 presents the qualitative results of different NURD correction methods on pull-back
scans of a flat surface of a sponge. The en face images by the mean value projection of the
original and corrected results are shown in the first row, and the numbers at their bottom represent
the NURD-induced precession angle of the flat surface. It is obtained by (1) firstly connecting the
center positions of the first and last frames in the sponge sequence (blue dashed line with arrow)
and (2) then measuring the deviation angle between the blue dashed line and the flat reference
(black dashed line). The original sequence is gradually distorted by NURD of synchronous
rotation and pull-back scanning causing a maximum precession angle of 79.5◦. All the NURD



Research Article Vol. 15, No. 1 / 1 Jan 2024 / Biomedical Optics Express 328

Fig. 7. Qualitative comparison of different NURD correction methods on gastrointestinal
tract test data. (a) is the 3D view of a volumetric scan of the gastrointestinal tract. The red
and blue boxes refer to the zoom-in area in (b) and (c), respectively. (b) The local regions of
OCT images are composed of three consecutive frames which are separately mapped to R,
G, and B color channels. (c) Local en face images with mean value projection operation.

correction methods are able to reduce the precession angle (a precession angle of 0◦ represents the
real state of the sponge). Our method outperforms others and achieves the minimum precession
angle of 5.7◦. Our method also reserves the morphological feature of the sponge, while the DP
method causes structural stretch as pointed out by the white arrows. The second row of Fig. 8
is the 3D rendering of the sponge, which further illustrates the performance advantages of our
method. Besides, we give the first and last frames of the sequence in the last two rows.

Fig. 8. Qualitative evaluation of the NURD correction performance on a flat sponge surface
data. En face images by the mean value projection of the original and corrected results
are shown in the first row, and the numbers at their bottom represent the NURD-induced
precession angle of the flat surface. Their 3D rendering is shown in the second row. The last
two rows are the first and last frames of the sequence.

To provide a comprehensive comparison of processing speed and correction accuracy, we
combine the two and plot a histogram of the results of our proposed method against three other
representative methods. The public gastrointestinal tract data is used in this evaluation. The
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results are shown in Fig. 9. Orange bars represent their mean-STD (smaller means better). Blue
bars represent the processing speed (ms/frame) and the corresponding frame rate in fps. It can
be observed that our method achieves the best correction performance (statistically significant)
while also improving processing speed by about three times, reaching real-time performance.

Fig. 9. Comparison between the results of our proposed method and three other representative
approaches. Orange bars represent their mean-STD (smaller means better). Blue bars
represent the processing speed (ms/frame) and the corresponding frame rate in fps.

3.3. Correction performance on 3D stent imaging

As a practical application, we conduct a pull-back endoscopic OCT scanning of the intravascular
stent and correct distortion for the raw sequence to verify our correction performance for inherent
NURD of the endoscopic OCT system. In vascular interventional procedures, endoscopic OCT
imaging is commonly used to produce high-resolution in vivo images of blood vessels and
deployed stents, providing accurate measurements of luminal architecture and insights regarding
stent apposition [32,33]. In this experiment, a 30 mm length intravascular stent with a 4 mm
diameter was used for imaging shown in Fig. 3(c). We wrapped up the stent with printer paper to
simulate a lumen. We pulled back the mini-probe at a speed of 1.5 mm/s and collected about 640
images with ∼25 mm axial length.

Figure 10(a) and (b) show the 3D view of direct imaging and after correction, respectively. For
an intuitive comparison, we unfold the 3D view to 2D en face maps shown in Fig. 10(c) and (d)
by mean value projection. Due to friction and speed of the motor, shift distortion and uncertain
stretch-shrink occur in the original en face projection according to the inherent structure of the
stent. After correction by our proposed method, The imaging appearance of the stent is closer
to the real structure itself. In addition, we show a cross-section example of (e) before and (g)
after correction at the same frame location with three consecutive frames mapped in 3 channels
separately. The corresponding enlarged views are displayed in (f) and (h), respectively. By this,
it can be observed that the proposed method alleviates the artifacts caused by NURD.

3.4. Influence of training data

In the training of our NURD correction model, we use publicly-available endoscopic OCT
datasets, which may influence the correction performance due to their intrinsic NURD. To
address this issue, we also employ ophthalmic OCT data for training, which was acquired via
raster scanning and thus inherently NURD-free. We employ 11,206 retinal OCT B-scans from a
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Fig. 10. The NURD correction performance of 3D intravascular stent imaging. (a) and
(b) are 3D views of the original data and corrected data, respectively. (c) and (d) are 2D
en face projections of (a) and (b). (e) and (g) are original and corrected cross-section
images composed of three consecutive frames separately mapped in R, G, and B channels,
respectively. (f) and (h) are enlarged views of the blue box in (e) and (g), respectively.

publicly-available dataset [34] with the same distortion vectors extracted from endoscopic OCT
data to generate 20,000 original-distorted training pairs.

The NURD correction results using these two types of training data are demonstrated in Fig. 11,
Fig. 12, and Table 3. As shown in Fig. 11, the NURD on the synthetic human nasopharynx
and pig bronchus data could be effectively corrected when both the endoscopic and ophthalmic
OCT data are used for training. The corresponding quantitative results (Fig. 12) indicate better
performances are achieved when using the endoscopic OCT data for training. We further deploy
the trained models on the real gastrointestinal tract data. Their quantitative results are listed in
Table 3. Consistent with the results of the synthetic data, the model trained on endoscopic OCT
data performs better.

Table 3. Comparison of the NURD correction on the real gastrointestinal tract data using different
types of training data. The data format in the table is the mean (standard deviation).

Original Using endoscopic OCT data for training Using ophthalmic OCT data for training

81.693 (38.261) 60.225 (30.120) 64.585 (35.064)

Due to the domain discrepancy between the endoscopic and ophthalmic OCT data, we can only
suspect that the influence of the inherent NURD is neglectable. From the perspective of model
training, our method (as illustrated in Fig. 1) aims to align the designedly distorted frame with
the original one. Whether or not the original frame is inherently distorted, the model is to predict
the artificially created distortion vectors, the influence of the inherent NURD should be minimal.
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Fig. 11. Qualitative comparison of NURD correction performance using endoscopic and
ophthalmic OCT data for training. (a) The results of synthetic pig bronchus data. (b) The
results of human nasopharynx data.

Fig. 12. Quantitative comparison of NURD correction performance using endoscopic and
ophthalmic OCT data for training. (a) The results of synthetic pig bronchus data. (b) The
results of human nasopharynx data.

3.5. Ablation studies

To evaluate the effectiveness of the bi-directional prediction loss of two distortion vectors between
the original frame and distorted frame in the training phase designed in our proposed method, we
perform ablation studies on the gastrointestinal tract test data.

The results evaluated with mean-STD metric are shown in Table 4. For predicting the distortion
vector 1 that transformed the original frame into the distorted frame, using only L1 Loss can
significantly improve the performance of correcting distortion reducing mean-STD value of
∼19. When combined with the smoothness loss and similarity loss, the mean-STD value is
slightly reduced. With the addition of another auxiliary prediction of distortion vector 2 that
transformed the distorted frame into the original frame, the results achieve the best performance
compared with other settings. It is noted that further improvements demonstrate the effectiveness
of bi-directional prediction. Furthermore, this setting alleviates the NURD in the inference phase
without adding much computation time and additional label burden in the training phase.
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Table 4. Ablation studies of different prediction loss settings. The data format in the table is the
mean (standard deviation).

Original Ll1 Ll1 + Lsm−1 + Lsi−1 Ll1 + Lsm−1 + Lsi−1 + Lsm−2 + Lsi−2

81.693 (38.261) 62.420 (32.145) 62.056 (31.178) 60.225 (30.120)

3.6. Evaluation of processing speed

Finally, we compare the processing speed of the two learning-based approaches in further detail.
As shown in Table 5, our method enables significant time-savings during pre/post-processing
compared with the CNN-based method, which is due to the fact that our approach does not
require the pre-construction of a spatial correlation matrix. Note that we achieve the capability
of real-time NURD correction at 26±3 fps while keeping a good accuracy.

Table 5. Comparison of the processing speed using two learning-based methods.

Methods Pre- & post-processing Model inference Total time/frame Frame per second

De-NURD 133.47±22.64 ms 3.11±1.68ms 136.28±23.81 ms 8±1 fps

Ours 29.81±3.63 ms 8.86±0.48ms 38.67±3.64 ms 26±3 fps

4. Discussion

Self-attention, a groundbreaking mechanism for deep learning, has ushered in transformative
advancements in NLP and CV [35]. In NLP, large language models like BERT and GPT-4,
built on self-attention, have excelled in language tasks due to their ability to capture context and
dependencies in text [36]. In CV, the vision transformer architecture and its variants leverage
self-attention to process images by dividing them into patches and applying this mechanism to
them [37]. They have achieved remarkable success in many tasks, such as classification, object
detection, and semantic segmentation [38]. Besides, downstream applications such as medical
image analysis also benefit from the paradigm shift from CNN to transformer [39].

In this work, we employ the self-attention mechanism to address the NURD problem in
endoscopic OCT. We found that its capability of learning long-range dependencies and spatial
correlations is useful in improving the efficiency of NURD correction. We designed the stacked
cross-attention network specifically for this application (described in Section 2.2). Compared
with existing NURD methods, our method achieves a ∼ 3× speedup to real time (26 ± 3 fps).
We further design an overall framework for learning the NURD correction (described in Section
2.1) by leveraging three types of optimization constraints, including the L1, smoothness, and
similarity losses. We also introduce a bi-directional design in the architecture of the framework.
Their effectiveness in improving the NURD correction performance is verified through the
ablation studies in Section 3.3. These new designs allow our method to outperform existing
NURD correction methods not only in terms of efficiency but also in terms of performance.

To verify the generalization performance of our method, we test it on the data from several
different OCT systems that cover the mainstream engines for endoscopic OCT imaging, including:
(1) A tethered capsule endomicroscope for imaging gastrointestinal tract using a swept-source
OCT system [28]. It uses near-infrared wavelengths sweeping from 1,250 nm to 1,380 nm. It
acquires circumferential, cross-sectional images at 20 frames s−1 using a total of 2,048 axial
(depth) scans per image. (2) A volumetric scanning OCT system for general luminal organ
diagnosis [29]. It was built around the Axsun swept-source engine, with a 1310 nm center
wavelength-swept source laser and 100 kHz A-line rate. The OCT probe has an outer diameter
of 3.5 mm. It is terminated at the distal end with a transparent sheath on the tip, which allows
three-dimensional OCT imaging using an internal rotating side-focusing optical probe with two
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proximal external scanning actuators. (3) A home-built endoscopic OCT system for intravascular
imaging, which uses a spectral-domain OCT system for collecting the interference fringe. It has
a central wavelength of 840 nm and a line rate of 80 kHz. The fiber-optic probe has an outer
diameter of 0.46 mm. A homemade capillary tube-based fiber optic rotary joint driven by a
commercial motor (34 rps rotation speed) is applied to perform circumferential scan imaging.
For the data from the above systems, our method achieves superior accuracy and efficiency in the
NURD correction.

Our method can be beneficial to many application scenarios of OCT: (1) Surgical navigation
and surveillance using OCT have revolutionized the field of minimally invasive procedures
[40–42]. With its high-resolution imaging capabilities, OCT allows surgeons to navigate
with unprecedented precision within complex anatomical structures. During surgery, real-
time OCT imaging provides dynamic feedback, enabling surgeons to visualize tissue layers,
assess boundaries, and confirm instrument placement. This real-time guidance enhances surgical
accuracy, reduces the risk of complications, and minimizes the need for extensive tissue dissection.
(2) Functional OCT imaging techniques that require capturing temporal dynamics (repeated
scanning of a specific position), such as angiography, elastography, and thermometry. Bouma et
al. developed a microscopic image guidance platform for radiofrequency ablation (RFA) using a
clinical balloon-catheter-based optical coherence tomography (OCT) system [11]. They have
shown that the computational correction of NURD could be used to improve the calculation of
complex differential variance, which was then used to visualize the therapeutic thermal field.
(3) The high spatial resolution of OCT enables its applications in rapid In situ diagnosis. The
presence of NURD increases the probability of misdiagnosis. Especially now that AI diagnostic
models have been integrated with imaging instruments, the impact of imaging distortions will be
further amplified [43].

Despite the above merits, the NURD correction method based on the proposed cross-attention
learning has some limitations: (1) Learning-based methods require a large number of labels
(supervision) for training. As mentioned above, we follow the approach in [19] by extracting the
pseudo-GT distortion vectors using a feature-tracking method. Then we apply these distortion
vectors randomly to the OCT images used in training. The stacked cross-attention network is
trained to learn the mapping from manually distorted images to distortion-free ones. However,
such a method is data-hungry and time-consuming. To address this issue, different supervision
generation methods should be developed. (2) Our method is still in the category of image-based
NURD correction and thus has the inherent drawbacks of such methods. This type of approach
assumes that adjacent frames show a high degree of morphological coherence, i.e., and rotational
artifacts result in faster changes in appearance than structural changes inherent in the appearance
of the tissue. This is usually feasible in general clinical endoscopic imaging, except in a few
cases, such as structural mutations and microscopic lesions at tissue junctions.

5. Conclusions

Here we tried to address the efficiency issue of NURD correction in endoscopic OCT and its
functional extensions. Inspired by the self-attention mechanisms, we have developed a cross-
attention learning method, to establish spatial correlations between OCT A-lines efficiently. We
have designed and implemented an end-to-end stacked cross-attention network with optimization
constraints. Compared to existing methods, we have achieved a substantial ∼ 3× speedup to
real-time processing (26 ± 3 frames per second) and superior NURD correction performance.
Our approach will contribute to the further development of endoscopic OCT technology and its
multi-organ, multi-functional, multi-clinical scenario applications, as well as other rotational
scanning imaging techniques such as intravascular ultrasound.
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